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a b s t r a c t

Designing a robot system with reasoning and learning ability has gradually become a research focus
in robotics research field. Recently, Skill Transfer Learning (STL), i.e., the ability of transferring human
skills to robots, has become a research thrust for autonomous robots and human–robot cooperation.
It provides the following benefits: (i) the skill transfer learning system with independent decision-
making and learning ability enables the robot to learn and acquire manipulation skills in a complex and
dynamic environment, which can overcome the shortages of conventional methods such as traditional
programming, and greatly improve the adaptability of the robot to complex environments and (ii)
human physiological signals allow us to extract motion control characteristics from physiological levels
which create a rich sensory signal. In this survey, we provide an overview of the most important
applications of STL by analyzing and categorizing existing works in autonomous robots and human–
robot cooperation area. We close this survey by discussing remaining open challenges and promising
research topics in future.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous robots and human–robot cooperation are becom-
ing more personalized, interactive, and engaging than ever, pro-
viding assistance ranging from daily life to manufacturing, health-
care, and transportation [1]. In these applications, robots are
desired to have the capabilities of handling tasks autonomously
in different environments and interact with human safely. A key
enabler to these applications is to design a system with reasoning
and learning ability.

Early robotic manipulation or motion behaviors are usually
composed of a series of prescribed motion sequences, which
cannot adapt to changing and complex environments [2]. How-
ever, for complex tasks, pre-programming a robot is not only
inefficiency and tedious, but also impracticable, especially if tasks
are constantly updated or changed. In addition, traditional pro-
gramming approaches cannot achieve autonomous behaviors due
to the overlook of human actions and external environments.
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For example, in a household service scenario, it is hard to pre-
program the robot’s tasks taking into account all potential human
behaviors and indoor environment configurations. To date, few
existing robots can easily perform tie shoelaces, cook, or cut hair.

For human grasping and lifting tasks, neurophysiological re-
search reveals that human relies on the detection of discrete
mechanical events that occur when grasping, lifting and replacing
an object. Such events represent transitions between phases of
the evolving manipulation task (e.g., object contact, lift-off, etc.),
and provide critical elements required for the sequential control
of the task as well as for corrections and parameterization of the
task [3]. Even a simple power grasp manipulation task would
engage large parts of the human brain [4], requiring sophisticated
control processing. Coordinated and graceful lifting patterns ob-
served in adults are not realized until humans are 8–10 years
old [5]. Therefore, humans need nearly a decade of daily practice
to master this seemingly simple sensorimotor task.

Consequently, robots are desirable to have the abilities of
perception, decision-making and learning in a complex and dy-
namic environment [6]. It is well known that human manip-
ulation behavior essentially relies on the constant exploration
and understanding of the relationship between actions and sen-
sory responses. Human usually preserves the skill knowledge
learned in the past and utilizes it to help future learning and
problem solving. Inspired by human learning and skill transfer
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Nomenclature

BCIs Brain–computer interfaces
BMIs brain–machine interfaces
CMPs compliant movement primitives
CNN convolutional neural network
DDPG Deep deterministic policy gradient
DMPs dynamic movement primitives
DPG Deterministic policy gradient
DQN Deep Q-network
DRL deep reinforcement learning
EEG electroencephalogram
GMMs Gaussian mixture models
GPIRL Gaussian process inverse reinforcement

learning
GPS Guided policy search
GQ-CNNs Grasp Quality Convolutional Neural

Networks
HMMs hidden Markov models
IRL inverse reinforcement learning
POMDP partially observable Markov decision

process
ProMPs probabilistic movement primitives
RL reinforcement learning
sEMG surface electromyography
SNR signal-to-noise
SOSC scalable online sequence clustering
STL skill transfer learning
TMR targeted muscle reinnervation
TRPO Trust region policy optimization

process, developing robot functionality with human level ca-
pability of perception, planning and control, has always been
an essential goal. Similar to human behaviors, robots typically
need to physically interact with environments or humans while
performing tasks with rich and informative neurophysiological
sensory signals, which are all occurring simultaneously with ac-
tions. Moreover, there is a relationship between the sensory
responses and actions which could be explored to predict and
interpret these behaviors. For autonomous robots and human–
robot cooperation, skill transfer learning enables robots to retain
or utilize the behaviors observed from human as their skills,
improve them by practice, and then apply them into new task
environments. The main idea of STL is to develop technical so-
lutions by imitating and exploiting the natural models, systems,
and processes.

Motivated by this idea, robots gradually gained the ability
to automatically generate motion sequences to perform desired
tasks according to the characteristics of the environment and the
object, e.g., size and weight [7]. In addition, human neurophysio-
logical signals have been adopted to restore human manipulation
functionality by using human muscle activity or cerebral cortex
to control the movements of different autonomous devices and
perform different human-cooperation tasks [8–10].

Based on STL, autonomous robots and human–robot cooper-
ation have been a key research area in advanced robotics. The
STL methods have been widely applied in perception, learning
and control, which integrate knowledge from neurophysiological
signals [11], cognitive and executive processing [12]. These new
skill acquisition mechanisms significantly facilitate the develop-
ment of robotic systems with desired properties inspired from
neurophysiological and human skill learning processes, such as

adaptivity, robustness, versatility, and agility [13]. Because of
the advantages listed above, STL has attracted great research
attention, and becomes a vital tool enabling robots to deal with
environment uncertainties. However, the acquisition of human
autonomous skills is quite challenging.

There exist excellent surveys in the literature regarding the
skill acquisition process in robot area [14–19]. However, most of
them either focus on the robot learning (e.g, machine learning
in robotics, RL in robot control) or pure affordances in psychol-
ogy and neuroscience. Few of them reviews the topic of STL,
especially for the skill acquisition via neurophysiological signals.
In this paper, we summarize the status and challenges of STL
systems. The remainder of this paper is organized as follows. In
Section 2, we present the state of the art of STL which includes
the categorizations, framework and application of STL. Section 3
introduces the robot learning of STL. Section 4 reviews the recent
developments of STL via neurophysiological signals. Section 5
discusses future directions for STL in autonomous robots and
human–robot cooperation.

2. Skill transfer learning

Autonomous robots and human–robot cooperation are de-
sirable to handle objects of different size and weight in a dy-
namic environment. Skill learning cannot only address challenges
caused by the lack of accurate object model and interaction
dynamic model, but also the increasing complexity of perception
and control of systems with large degrees of freedom. In addi-
tion, with the development of recent neuroscience technologies,
precise nature of human neural representations can be utilized to
transfer human skills to robots.

By exploiting robot learning and human–robot skills, STL can
enhance robot skill acquisition and enable robust perception-
guided manipulation behaviors, utilizing a large number of ma-
chine learning approaches in robotics. Fig. 1 shows the catego-
rization of STL. Generally, STL has two benefits. First, the STL
system with independent decision-making and learning ability
enables the robot to learn and acquire manipulation skills in
a complex and dynamic environment, which can overcome the
shortages of conventional methods such as traditional program-
ming, and greatly improve the adaptability of the robot to the
environment. Second, human physiological signals allow us to
extract motion control characteristics from physiological levels to
create rich sensory signal. In this section, we will introduce the
framework and interfaces of STL, and elaborate the benefits of STL
in more detail.

2.1. Skill transfer learning framework

A robot system usually consists of a body part, and perception
and control modules. The robot body interacts directly with the
physical environment via actuators, sensors, and the guidance
of human intension. As shown in Fig. 2, STL can be divided
into two parts: robot autonomous learning and human intention
acquisition transfer. Skill model is the core of STL which can be
characterized by the type of feedback and the process of data
generation. Skill reproduction is the other important component
of STL, which produces the corresponding actions according to
the learned skill model.

As for the learning process, demonstrations of the task are
collected and then used to extract the desired motion informa-
tion which include position, velocity, force etc. In addition, the
stiffness can be collected for some collaboration tasks [20,21].
After demonstration, the data sets of skills information are ac-
quired. Specially, the motion representing, demonstration align-
ment, motion segmentation and generation should be consid-
ered [22]. Note that human intention acquisition transfer only
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Fig. 1. Categorization of STL.

Fig. 2. Diagram of robot STL model.

needs to acquire the human decoding signals from human inten-
tion. After obtaining the skill model, the motion policies can be
mapped to robot controller. The learned skill model can then be
used for reproducing the robot behavior in new environment.

2.2. Interfaces for skill transfer learning

The interface for STL plays a key role in collecting and trans-
mitting information. Generally, STL interfaces can be divided into
following modes.

2.2.1. Physical interaction
Physical interaction is also called kinesthetic teaching [23,20].

In this case, the robot is under the physical guidance of humans.
This approach allows users to use the robot’s own capabilities to
demonstrate skills in the robot’s environment. A natural demon-
stration interface is also provided to correct skills reproduced by
the robot. In [24], the skills of tactile capabilities were exploited
by the kinesthetic teaching. In [25], Keyframe-based learning
was proposed by human via physical guidance. Since the user
directly manipulates the robot during physical interaction, the
robot’s movement is restricted within the workspace. There-
fore the robot’s kinematic are all restricted in the workspace.
In addition, no extra devices (e.g., motion capture or teleopera-
tion devices) are needed. However, physical interaction may be
challenging for everyday users who have limited experience in
manipulating robots with many degrees of freedom.

2.2.2. Teleoperation
In this case, a human user needs to use the robot’s own sensors

and effectors to perform tasks. Teleoperation can be accomplished
using simple joysticks or other remote control devices (e.g., haptic
devices [26]). In [27], a bilateral coupling teleoperation system
was utilized to perform demonstrations, and statistical model
was trained in pure follower/leader role assignment mode that
alternates between human and robot. Compared with external
motion tracking systems, the advantage of teleoperation is that
it completely solves the correspondence problem, because the
system directly records the perception and movement from the
robot’s configuration space. It also outperforms kinesthetic train-
ing because it allows remote training and therefore is particularly
suitable for teaching navigation and locomotion modes. Since
robots and teachers do not need to share same space, teleopera-
tion is used to transmit the kinematics of motion. The kinematics
of the demonstration is directly transmitted to the robot and
sometimes it combines with the haptic devices to train a motion
model based on perceived forces.

2.2.3. Vision and wearable devices
Vision and wearable devices capture human motion by using

human body model, which can then be mapped to the robot.
The angular displacement of human limbs and joints can be
accurately measured by these external means. In [28], human
demonstration motions were captured by Vicon, an optical mo-
tion capture system. In [29], movements were collected by using
a Kinect v2 sensor. Besides mentioned visual capture system,
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exoskeleton [21], were also utilized to extract human motion
for rehabilitation. Human can move freely when using vision
and wearable devices; however, the correspondence issues is
the main challenge. Since human body and robot have differ-
ent kinematics and dynamics constraints, transferring human
demonstrations to robot can be difficult and even impossible in
certain tasks.

2.2.4. Human physiological signals
With the help of various sensors, biological signals can be

collected to perceive human’s motion intention and assist the es-
timated motion in real-time. In [30,31], sEMG was used to manip-
ulate a series of tasks consisting of tracking/recogniting/grasping
of an object. In [32], the EEG was applied to enable the robot to
perform manipulation tasks guided by human operator’s mind.
Since physiological signals can directly encode the perception
and action of human, this method has the benefits of easy ac-
cessibility, fast adaptivity, and stability, and thus is particularly
suited for limb prosthesis or exoskeleton robot. However, human
intension decoding is still in its infancy, which limits its potential
applications.

2.3. Skill transfer learning application for autonomous robots and
human-robot cooperation

Currently, most STL methods focus on either grasping or ma-
nipulation goals. Example applications of STL are listed in Fig. 3,
which can be classified into four categories based on its operation
environments: industrial manufacturing, service robot, surgery
robot, and medical rehabilitation.

Since robot skills are transformable to various scenarios, de-
signing a robot skill model with compactness, comprehensive-
ness, stability, safety, learning ability and complexity is the key
for the robot to acquire, learn, and optimize these skills. Table 1
summaries four STL application domains of autonomous robots
and human–robot cooperation.

2.4. Benefits of skill transfer learning

Perform task without programming: Traditional robot program-
ming has to consider all possible situations that a robot might
encounter during mission operation. Therefore, the desired task
may need to be decomposed into dozens or hundreds of small
steps, and the robustness of each step should be tested before
applying in practice. When a failure occurs, the system has to be
updated to adapt to the new situation by repeating the tedious
programming process mentioned before. STL only requires the
demonstration of the desired performance from the end-user.
No coding as in traditional methods is needed. Even if a failure
occurs, the end-user only needs to provide more demonstrations.
Robots can even learn to improve their performance based on
the interactions with the environment. Therefore, STL is able to
transfer human skills via demonstrations to improve the robot’s
performance in mission operation.

Physiological signals enhance skill transfer: The study of STL
is closely related to the analysis and cognition of human be-
havioral characteristics, where neural signals are often consid-
ered as an ideal tool to understand the relationship between
neural representations and skill transfer in autonomous robots
and human–robot cooperation. Human superb sensorimotor can
enhance robot–robot, human–robot, and robot-environment in-
teractions. An immediate application of STL is to decode and
transmit neural signals by understanding neural representations
to control external devices. Similar to the use of sEMG or EEG
in prosthetic and rehabilitative robots [64,65] the skill learning
captures the essence of natural behavior and has become one of
the focuses in the research of human–machine interface.

3. Skill transfer based on robot learning

Robot learning can implicitly train a robot, so that human
users can minimize or eliminate explicit tedious programming
of tasks. Most of robot learning methods are data-driven. The
data required for robot learning can be generated by interactions
between the robot and the environment or provided by experts.
Based on this idea, the robot learning for skill acquisition can be
classified in the following types.

3.1. Model based learning

Model based learning [66] can reduce the complexity of robot
search strategy, and improve the learning efficiency of robot
operation skills. According to the use of demonstration data, the
learning can be divided into behavioral cloning [67] and IRL [68].

Behavioral cloning is essentially a supervised learning method.
It is based on the observed expert’s demonstration. Demonstra-
tion data sets generically include a series of trajectories, com-
posed states si, actions ai and next actions si+1. Then the sampled
state–action D was observed. By the methods of supervised learn-
ing, we can obtain the state–action mapping. There are two main
methods for skill learning: one is to mimic the motion data using
statistical machine learning, and the other is based on dynamical
systems [69].

Methods of statistical machine learning. Based on statistical ma-
chine learning, STL consists of GMMs, and HMMs. In [33], a
human–robot cooperative lifting task was presented by utiliz-
ing GMMs to encode and reproduce human behaviors. Human
and robot collaboratively lift an object through teleoperation.
GMMs was used to capture the robot’s motion and interacting
forces, while Gaussian mixture regression was utilized to gener-
ate the reproduction forces. In [34], the robot was endowed with
cognitive ability by using HMMs. The abilities of segmentation,
encoding, and clustering for collaborative behavioral primitives
were demonstrated. The proposed HMMs with a primitive graph
and a primitive tree were incrementally updated for behaviors
reproduction [70]. In [35], a hybrid structure was proposed to
simplify learning process. The feedforward control signals were
generated by GMMs to learn a model, and the parameters of the
impedance controller were adjusted based on the motion and
force errors generated during the task. In [21], based on hierarchi-
cal control scheme, task-parameterized GMMs were presented for
cooperations of an exoskeleton robot and human users. The pro-
posed learning model consists of high-level and low-level tasks,
where the high-level tasks are the cooperative impedance-based
manipulation tasks while the low-level tasks were to address
symmetric constraint in an admittance controller. In [71], a non-
parametric SOSC algorithm was proposed for online learning
and motion synthesis of high-dimensional robot manipulation
tasks, which could systematically adapt the model parameters
to changing situations such as position/orientation/size of the
objects.

Dynamic movement primitives. DMPs is another successfully used
behavioral cloning method which represents motion as policy
primitives based on nonlinear dynamic systems. Second-order
differential equations are often used to describe the system dy-
namics [72]. The advantage of expressing motion is that the
dynamics of the system can automatically correct the distur-
bance (robustness against disturbance). Early research regarding
the robot learning skills only focuses on the system acceler-
ation. In [49], a learning approach was presented to find an
acceleration-based predictive reaction for coupled agents to mini-
mize the differences of force signals caused by obstacle avoidance
or different paths to follow.
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Fig. 3. Some examples of STL applications.

Table 1
STL application domains for autonomous robots and human–robot cooperation.
Application areas Task descriptions Examples References

Industrial manufacture Making the end effectors have the desired posture
relationship while satisfying certain constraints.

peg-in-hole task, bending steel wire,
grinding and polishing, weld seam
welding, human and robot work
together to carry objects, etc.

[20,33,27,34,35], etc.

Service robot Manipulation or moving in the human environment
where the arrangement of objects is usually irregular
and dynamic changes often occur.

Ironing clothes and handling objects,
grasping, pouring water, playing ball,
autonomous navigation and obstacle
avoidance, etc.

[36–48,28,49–54], etc.

Surgery robot Surgical robots have complete difficulty to complete
skills autonomously, but robots can learn local surgical
skills and perform the local skill autonomously under
supervision.

Semiautonomous simulated brain tumor
ablation, multilateral cutting of tissue
phantoms, flexible insertion and mucosal
dissection of tubular instruments, etc.

[55–59], etc.

Medical rehabilitation Obtaining certain skills to enhance human ability,
realize rehabilitation training of paralyzed patients,
assist people to carry out various operations and allow
users to recover lost functionality by controlling a
robotic device with their remaining muscle activity.

Neuroprosthetics controlling and
rehabilitation training

[60,21,61–63], etc.

However, system velocities were not considered in the afore-
mentioned learning methods. Recently, various DMPs have been
proposed for the human–robot cooperation. In [50], coupled
movement primitives were learned by adopting iterative learning
control which exploited the force feedback generated during
multiple tasks. In [73], trajectory tracking and compliant control
were realized without using explicit models of system dynamics.
As a variant of DMPs, CMPs encode the position trajectory and the
associated torque profiles. In [74], a CMPs based approach was
proposed to obtain the motion data set the generation of compli-
ant and accurate motion. A distinguished feature of DMPs is its
ability to handle disturbances and system feedback, which makes
it a powerful tool for human–robot interaction, manipulation and
obstacle avoidance.

DMPs consider one-shot learning and provide spatial and tem-
poral scalability features as well as guaranteed convergence to the
target. Besides system acceleration, skill acquisition can also be
learned from system velocity. However, the motion dimension in
DMPs is represented independently and the correlation between
dimensions is lost. Statistical machine learning-based approach
directly learns from spatial data which makes it easy to encode
multiple demonstrations at one time. However, some character-
istics of DMPs are missing, such as the spatial scaling of motion
and convergence to the target position. In addition, DMPs require
a large number of demonstration data. Recently, ProMPs [75]
have been proven to have better reasoning ability than traditional

DMPs and multiple demonstrations can be combined to achieve
task-specific generalizations.

3.2. Inverse reinforcement learning

Learning a skill from scratch in a complex robotic system is
often not feasible or time consuming especially in the condition
of limited samples. IRL can obtain reward function based on the
given limited demonstration data, thus improving the general-
ization performance of learning strategy. Consequently, the IRL
addresses how to extract appropriate cost function from observed
behaviors and reconstruct the expert’s policy using RL.

IRL jointly solves the problems of what to imitate and how to
imitate. Essentially, IRL is to find a reward function for the task. To
determine the reward function, many approaches have been pro-
posed. In [68], max margin principle was proposed based on the
demonstration data, according to which the difference between
the optimal policy learned based on the reward function and
other sub-optimal policies can be minimized. In [76], maximum
margin planning framework was proposed based on the max
margin principle. The reward function was then transformed into
a maximum margin structured prediction problem over a policy
space. However, due to potential noise, IRL may not perform
well for real robots. In [77], a probabilistic approach based on
the principle of maximum entropy was proposed to determine
the reward function. The robot control policy still shows good
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performance even when the demonstration data is corrupted
with noise.

The aforementioned methods describe the reward function as
a linear combination of hand selected features. Recently, many
nonlinear functions have been adopted to design the reward
function. Margin-based methods have been proposed to learn
nonlinear reward functions through feature construction [78,79].
In [80], GPIRL algorithm was proposed which combined proba-
bilistic reasoning of stochastic expert behavior with the ability to
learn the reward as nonlinear functions of features. Thus, GPIRL
surpasses previous approaches on tasks with nonlinear rewards
and suboptimal examples.

These above traditional methods for obtaining reward function
were artificial designed, however, it is still difficult to design
an effective reward function algorithm from demonstration for
two reasons. First, IRL is fundamentally poorly defined because
different cost functions may lead to the same behavior [77].
Second, many standard IRL algorithms solve the forward problem
in the inner loop of an iterative cost optimization. Since accurate
dynamics models are not always available and the robots are
often complex systems with high dimensions, the solution of
forward problem is in general difficult to obtain. To address these
problems, deep neural network has been applied to represent the
reward function [81]. In [82], guided cost learning was proposed
which combined the cost function with policy optimization to
generate the reward function close to the expert demonstra-
tion trajectory. In [83], a generative adversarial network was
adopted to optimize the reward function, which obtained sig-
nificant performance gains over traditional learning methods in
large, high-dimensional environments.

3.3. Reinforcement learning

One of the most widely used learning approaches is RL, which
enables robots to discover optimal behavior through trial and er-
ror with the environment. Instead of providing explicit guidance,
the overall performance of the RL is based on a scalar objective
function. In contrast to IRL, the goal of RL is to find a policy that
optimizes reward function [14]. Different from other approaches
that learn from demonstrations, RL allows the robot to discover
new control policies by freely exploring the state–action space.
According to the type of reward function, RL can be divided into
value-function-based approaches and policy search methods.

Value-function-based approaches aim to identify (possibly ap-
proximate) solutions to reward function. Many value-function-
based RL approaches have been applied in robotic domain. In [84],
local linear system was adopted to estimate the reward func-
tion in the manipulation of a two-link robot. In [85], a highly-
tailored convolutional network architecture with domain-specific
optimizations was constructed for predictive models in the ma-
nipulation of granular media.

When applying RL to robotic systems, policy search meth-
ods are often preferred over value function-based approaches.
There are two reasons: (1) policy search methods are easy to
incorporate expert experience, which can improve the conver-
gence rate of policy optimization. (2) policy search methods
have fewer learning parameters than value-function-based ap-
proaches, which is more efficient. In [86], a policy search based
reinforcement learning method was applied for an anthropomor-
phic robot arm to learn to hit a baseball. In [87], a model-free
reinforcement learning algorithm was presented to learn motion
primitive goals. The proposed method could perform grasping
and the pick-and-place task subject to position uncertainties,
which improves the robustness of object manipulation skills.

3.4. Deep reinforcement learning

With the development of artificial intelligence and neuro-
science, more machine cognitive methodologies have been ap-
plied in robot learning. Deep learning [88] and deep reinforce-
ment learning (DRL) [89] have been adopted to help robots learn
complex skills. In [89], the end-to-end skills that take raw camera
images to compute corresponding motor torques (visual servo-
ing) have been demonstrated impressively. The work of [90] pre-
sented an approach to hand-eye coordination for robotic grasp-
ing from continuous servoing mechanism based on CNN, which
can effectively grasp a wide range of different objects, includ-
ing objects that have never been trained before. To address the
problems of universal picking under the inherent uncertainty
in sensing, control, and contact physics, the POMDP framework
for ambidextrous robot grasping was proposed which based on
robust wrench resistance as a common reward function [91].

Compared to conventional RL methods, DRL algorithms use
deep neural networks to express the value functions and policy
search methods, which not only avoid the use of artificial fea-
tures, but also easily integrate perception information into the
environment. Many popular DRL algorithms have been proposed
such as DQN [92], DPG [93], DDPG [94], TRPO [95], GPS [96] and
GQ-CNNs [91]. These algorithms have been successfully used in
electronic games and robot control in virtual environment.

Since the deep learning focuses on fitting the value functions
and policy search, DRL usually utilizes the gradient descent al-
gorithm to update cost function. As the number of dimensions
grows, more data and computation are needed to cover the
complete state–action space, leading to low learning efficiency.
Evaluating the states quickly becomes infeasible with growing
system dimension, even for discrete states.

4. Skill transfer learning via neurophysiological signals

Since human neurophysiology contains rich and useful en-
vironmental information, they can facilitate robot skill transfer.
Meaningful tactile feedbacks or perceptions have been studied in
a large number of neurophysiological and behavioral researches.
Human is able to understand the internal mechanism of actions
and then utilize it to realize appropriate behavior [12]. Inspired
by these sensorimotor abilities, detecting environment through
a neuromorphic interface and initiating an automated reflex in
the external devices (e.g., prosthesis, robot manipulators, wheel
chairs) has increasingly become a promising research area in
robotics.

4.1. sEMG based skill acquisition

It has been suggested that human sensorimotor systems can
control the impedance of the neuromuscular system [97,98].
Consequently, researchers plans to leverage human adaptation
skills to achieve dexterous motion control of robots, which could
greatly benefit the physical human–robot interactions and au-
tonomous manipulation in prosthetic devices. A large number of
research results have shown that the sEMG signals are closely
related to the muscle activations, muscular strength, and limb
configuration, which contains a wealth of information about
human intentions. The study of [99] aimed to decode shoulder,
elbow and wrist dynamic movements continuously and simul-
taneously based on multi-channel surface electromyography sig-
nals, useful for electromyography controlled exoskeleton robots
for upper-limb rehabilitation. Based on the sEMG stiffness mod-
ulation mechanism in human body, it has been widely used in
compliant manipulation or human–robot cooperation to achieve
safe interactions with the environment. In [60], a computational
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model utilizing the sampled sEMGs to calculate the human arm
endpoint stiffness was presented. When controlling a two-arm
exoskeleton robot, the adaptation skill of human body movement
was achieved by adjusting sEMG stiffness.

Moreover, sEMG can also be used as an effective input to con-
trol powered prostheses. This control method, also called sEMG
control, has been gradually applied to amputees or patients with
congenital lack of upper limbs. In an early work of [100], two
bipolar EMG electrodes were implanted in the flexor and extensor
muscles of the residual limb to control the velocity of closing and
opening of prosthesis proportionally. This kind of two-channel
sEMG control could only control one DOF at a time, acquiring
few skills from human. To address the limitations of this method,
researches have extracted more sEMG signals from a large num-
ber of channels, while various machine-learning techniques have
been proposed to decoding human intension [101].

Machine learning algorithms for sEMG skill transfer can be
classified into two categories, i.e., classification and regression.
For classification in sEMG, many machine learning techniques
can only activate individual functions in sequence [102,32,31],
resulting in low classification accuracy. Moreover, this method
cannot control the velocity of activated DOFs simultaneously.
While regression-based approach is proposed to address this
problem, which is available for simultaneous and proportional
control [103,104]. Regression does not map discrete motion, but
estimates the proportional activation of each DOF. In [105], a deep
neural network based method was proposed to derive sEMG-
force regression model for force prediction at eight different force
levels.

This supports independent, synchronous and proportional con-
trol of all DOFs. Specifically, in [63], a proposed regression-based
control enables simultaneous and proportional control of two
DOFs. The method was robust to the change of arm position.

4.2. Brain-machine interfaces

Machine-driven interface that bridges machine and human
nervous system has attracted growing public and research inter-
est, as it provides a means to restore body functions dominated
by nerve, spinal cord or brain. Specially, BCIs and BMIs can ac-
quire brain signals and utilize them to control external devices
(e.g., computers and machines).

Although human EEGs can vary among individuals, it is be-
lieved that the user’s motivation and cognitive arousal play an
important role in skill acquisition and final task execution [106].
BCIs and BMIs are based on the premise that sensory, motor,
and cognitive information can be represented by networks of
brain neurons, while the algorithms are designed to explain their
complex electrical activities. The produced nerve signals by neu-
rons (e.g., those related to expected actions) are then decoded to
control a BMI [107,108].

Skill transfer via EEG has been developed in previous stud-
ies and successfully applied for online control of a virtual ob-
ject [109], wheelchair [110], mobile robot [111] and quadcopter
[112]. One of the ultimate goals for BCIs is to enable anthropo-
morphic movement of highly flexible prosthesis, robot manipu-
lator or exoskeleton. In [64], by deciphering his brain activity, a
tetraplegia patient could rapidly learn to grasp or reach an object
using the prosthetic limb. However, most of current BMIs were
constrained to discrete exploration in one dimension or a plane,
without exploring the full possibilities in a 3D space [113–115].
Controlling a robotic arm for complex tasks such as reach-and-
grasp in a 3D environment using BMIs is extremely difficult,
especially for noninvasive interfaces. Recently, in [61], subjects
were able to effectively control the extension of the robotic
arm by adjusting their brain rhythm after a few trainings, and
maintained this control ability for several months.

4.3. Sensory substitution

Human dexterous manipulation is a complex process where
the motor commands, actions and sensory feedback are all cou-
pled. The rapid development of peripheral neural interfaces has
promoted the neurophysiology based STL [116]. Invasive intra-
cortically implanted electrode arrays were used to measure the
activity neurons in movement-related cortical areas. These arrays
are featured of small size and high SNR, and thus can facilitate
the control of robot to assist amputees via human neuromorphic
interface [117]. Sensory substitution is proposed to provide sen-
sory feedback for exploiting accurate muscle function. Various
methods can be used to achieve this goal including implanted
electrodes and surface nerve stimulation [118]. In [119], a dex-
terous hand prosthesis can be manipulated through stimulating
the median and ulnar nerve fascicles using transversal multichan-
nel intrafascicular electrodes. Researches have demonstrated that
motor neurons can physiologically innervate the muscles that
are responsible for the movement of the missing limb and re-
innervate other muscle tissues by TMR [120,121], which is useful
for the motor sensory skill acquisition for TMR patients.

To date, most of the applications on skill transfer via neuro-
physiological signals focus on prosthetic and rehabilitative robots,
while some of them have been used in remote or dangerous envi-
ronments [122,123]. Human–robot cooperation motion behaviors
rely on the contemplated stimulation of spinal cord, muscles or
nerves. Therefore, by decoding low and high level neural informa-
tion, sophisticated human-to-device interfaces could significantly
enhance the human STL capabilities.

5. Discussion and open questions

As for human skill acquisition, to be able to acquire ma-
nipulation skills from human, robots should have the ability to
learn behaviors from autonomous perception and control. STL
can address uncertain models of manipulated objects and robot
dynamics, as well as complex robotic systems with a large num-
ber of DOFs. Moreover, STL could utilize a user’s motivation and
cognitive arousal to achieve skill transfer directly. Many of the
proposed STL approaches to skill acquisition for robot either
depend on learning methodologies or human cognitive and neural
signals in place of conventional control-theoretic approaches.

Based on the existing literature on robot STL, the application of
STL for autonomous robots and human–robot cooperation mainly
focus on the following three points:

• How to generalize and improve the skill acquisition perfor-
mance by robot learning.

• How to acquire new operational skills with less training data
and lower training cost.

• How to decode human’s movement intention from neural
activity while transferring them to autonomous devices for
improved human–robot cooperation.

To this end, the open issues are discussed and future directions
are highlighted in this section.

5.1. Robot learning algorithm

The core of robot learning is to model robot perceptions
and actions, and thus endows robot with independent decision-
making and learning capabilities. STL through robot learning from
human demonstration and RL can help us understand the self-
organization properties of robot actions. Perception and action
are the two essential elements in robot learning, which suggests
that the robot motor behavior is based on rich perceptual vari-
ables, and vice versa. In addition, the perception can be exploited
to produce novel actions.
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There are some limitations in endowing robots with new skills
by robot learning only. First, learning process requires a large
number of data to train the model, e.g., the DRL, and prohibitively
long interaction with the system to learn complex skills — typi-
cally weeks or months of real-time execution. Over the tedious
course of training, the controller may exhibit sudden and chaotic
behavior, leading to logistical complications and safety concerns.
Though training process are often tested in a simulation envi-
ronment, refine the training model from simulation environment
to a real robot system is still a challenging problem, as it is
hard to design an accurate simulator corresponding to the real
robot. Alternatively, robot can learn skills from an expert by
demonstration, however, sometimes it is hard to find an expert
for demonstration, especially for dangerous tasks. In addition,
since most robot learning methods are end-to-end, function ap-
proximation may not be ensured due to potential instability and
divergence when implementing the off-policy.

5.2. Human movement intention acquisition

Skill acquisition through human neurophysiological signals
bridges the human intension and external devices. Although hu-
man skill can be transferred to robot via human intention, the
mechanism of human neurophysiological control is not fully un-
derstood. In addition, the invasive approaches face the potential
issues of post-surgery complications and infections, and the chal-
lenge of maintaining stable chronic recordings, which might limit
its application in medical care. Since no surgery is needed and the
electrodes can be conveniently placed, noninvasive approaches
are more preferred. However, noninvasive systems could not
achieve proficient multi-dimensional control of a robotic manip-
ulation in three-dimensional (3D) space. This is because noninva-
sive approaches do not use proprioceptive feedback, resulting in
low accuracy and efficiency of STL. Currently, most applications
on neurophysiological signals STL are limited in the sense that
only one DOF can be controlled at the same time. A co-contraction
or other heuristics algorithms can be adopted to control of mul-
tiple DOFs. However, such approaches are counterintuitive and
time consuming. Moreover, the simultaneous control of multiple
DOFs and the velocity is challenging.

6. Conclusion

In conclusion, an overview on the current state of the art of
STL research has been presented. In addition to discussing STL,
various other robot learning algorithms are discussed and com-
pared. We also include neurophysiological skill acquisition using
STL. In the end, we present the challenges and open questions of
applying STL to autonomous robot and human-cooperation.
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